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Abstract 
This paper exemines the conditions for volatility pesistence in real returns in 

heterogeneous agent models with borrowing constraints, capital accumulation, production, 
and idiosyncratic endowment shocks. In contrast to previous studies, which did not include 
real capital accumulation and production, borrawing constraints are not necessary for the 
appearance of volatility persistence in real returus. However, volatility measures positively 
correlated with real returns and negatively correlated with gdp only when borrawing 
opportunity are restrictive. 
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1. Introduction 

The significance of heterogeneous agent models for expleining key macroeco-

nomic facts, has led to a call for a "requiem" for models based on the "representative 

agent". In particular, Carroll (2000) has drawn attention to heterogeneity in agents as a key 

ingredient for explaining the aggregate marginal propensity to consume as well as skewed 

wealth distribution. However, for Carroll, heterogeneity among consumers rests on 

different rates of time preference, not on differences in risk aversion. In the Carroll model, 

preferences are based on identical logarithmic utility functions among agents. 

Recent research with heterogeneous agent models has focused on the presence of 

borrowing constraints to explain another key macroeconomic fact, namely, volatility 

clustering or persistence in real returns. Den Haan (1997, 1999), den Hann and Spear 

(1998), and Zhang (2000) all examine the issue of volatility persistence under different 

extensions of a stochastic endowment model with idiosyncratic shocks and borrowing 

constraints. In thaese models, risk aversion is identical among agents. In the experiments 

reported in these papers, the risk aversion coefficient for all the agents is set at values 

between .4 and 5. 

In addition to heterogeneity in risk aversion among agents, there has been little 

analysis of the role of production opportunities in environments where borrowing/lending 

opportunities may be limited. Huggett (1997) introduced heterogeneous agents into a 

Brock-Mirman stochastic growth framework with idiosyncratic endowment shocks and a 

continuum of agents, but he did not consider the question of volatility persistence in real 

returns. 

This paper uses a framework similar to those examined in recent literature but adds 

heterogeneity in risk aversion, as well as capital and production opportunities with limited 

lending/borrowing opportunities for individual agents. With these extensions, the following 

conclusions emerge with respect to "volatility persistence" in real returns and the presence 

or absence of borrowing limits: 

- it does not matter if their are very tight binding borrawing limits or not 

- it does not matter if there is "aggregate uncerteinty" or not; 

- if the heterogeneous agents in the model are sufficiently "heterogeneous", in 

terms of differences in risk aversion, or different endowment processes, then real returns 

exhibit volatility persistence 

- the results are robust for models with two or three agents-or more. 
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- borrawing constraints are more likely to predict strong negative correlations 

between time-varying risk and output as well as between timevarying risk and real returns. 

2 .The Model 

The usual constant relative risk aversion (CRRA) utility function characterizes the 

preferences of each agent or household: 
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where σi is the coefflcient of relative risk aversion for agent i.. 

Each maximizes the following intertemporal discounted utility function over an 

infinite horizon: 
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with O <β < 1. 

Each agent faces the following budget constraint: 
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where i
te  is the endowment of agent i at time t, i

tk  is the productive capital or 

bonds held by agent i at time t, and δ is the rate of depreciation. 

The variebles wt and rt represent the real wages and return on capital at time t. 

There is a single firm that operates the technology, with marginal productivity conditions 

for wages and capital returns based on aggregate capital and labor, K and E.. Labor 

endowments follow a Markov chain, with no aggregate uncerteinty. 
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Each agent solves the dynamic discounted programming problem and faces a 

decision rule based on the following Euler equation: 
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3. Solution Method 

To solve the Euler equation for the optimel decision rule for each agent, we make 

use of parameterized expectations, extensively analyzed by Marcet (1988, 1993), and den 

Haan and Marcot (1990).  

The Euler equation is parameterized in the following way: 
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where the functional form iΨ is a neural network, with arguments t
i
t

i
t Kek ,, and 

parameters γi.Each agent forms expectations on the basis of observing personal capital and 

labor endowments, as well as aggregate capital. Since there are only idiosyncratic shocks to 

endowments, there is no aggregate uncertainty with respect to the evolution of E. 

The neural network specification of the expectations function );,,( i
t

i
t

i
t

i Kek γΨ

has the following form: 
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where J* is the number of exogenous or input variables, set at three, for 
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tn is a linear combination of the input 
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variables, i
tN  is a logsigmoid or logistic transformation of i

tn , and i
tΨ̂  is the neural 

network prediction at time t of [ ])1()( 11 δσ −+ +
−

+ t
i
t rcE i for agent i, summarized by the 

function );,,( i
t

i
t

i
t

i Kek γΨ , with the parameter set { iγ } = { }i
k

i
j kb , , j = 1,...,J*, l =

1,...,L*.

As seen in this equation, the only difference from ordinary nan-linear estimation 

relating "regressors" to a "regressand" is the use of the hidden nades or neurons, N. One 

forms a neuron by taking a linear combination of the regressors and then transforming this 

variable by the logistic or logsigmoid function. One then proceeds to thus one or more of 

thase neurons in a linear way to forecast the dependent variable tψ̂ .

Sargent (1997) has shown that the neural network specification does a better job of 

"approximating" any non-linear function than polynomial approximations, in that sense that 

a neural network achieves the same degree of in-sample predictive accuracy with fewer 

parameters than a polynomial approximation, or achieves greater accuracy than a 

polynomial one, using the same number of parameters. 

The main choices that one has to make for a neural network is L*, the number of 

hidden neurons, for predicting a given variable iΨ . Generally, a neural network with only 

one hidden neuron closely approximates a simple linear model, whereas larger numbers of 

neurons approximate more complex non-linear relationships. Obviously, with a larger 

number of neurons in the hidden layer of the network, one may approximate progressively 

more complex non-linear phenomena, but at the cost of an increasingly larger parameter 

set. 

The approach of this study is to use relatively simple neural networks, between 

two and four neurons, in order to show that even relatively simple neural network 

specifications do well for approximating non-linear relations implied by forward-looking 

expectations in stochastic dynamic general equilibrium models. 

Each agent solves the optimization problem for iγ  in order to minimize the sum 

of squares of the following error metric: 
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The error function is minimized, subject to the following constraints: 

 Kt > 0        (9)
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(10)

bt < λKt       

 (11) 
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where bt represents aggregate borrowing at time t. Individuals are net borrawers if 

their asset holding are less than zero. 

Since the parameterized expectation solution is a relatively complex nonlinear 

function, the optimization problem is solved with a repeated hybrid approach. First a global 

search method, genetic algorithm, similar to the one develaped by Duffy and McNelis 

(2000), is used to find the initial parameter set { iγ }, then a local optimization, the BFGS 

method, based on the quasi-Newton algorithm, is used to "fine tune" the genetic algorithm 

solution. 

De Faleo (1998) applied the genetic algorithm to nonlinear neural network 

estimation, and found that his results "proved the effectiveness" of such algorithms for 

neural network estimation.. The main drawback of the genetic algorithm is that it is slow. 

For even a reasonable size or dimension of the coefficient vector, the various combinations 

and permutations of the coefficients which the genetic search may find "optimal" or close 

to optimal, at various generations, may become very large. This is another example of the 

well-known "curse of dimensionality" in non-linear optimization. Thns, one neads to let the 

genetic algorithm "run" over a large number of generations—perhaps several hundred—in 

order to arrive at results which resemble unique and global minimum points. 

Quagliarella and Vicini (1998) point out that hybridization may lead to better 

solutions than those obtainable using the two methods individually. They argue that it is not 

necessary to carry out the quasi-Newton optimization until convergence, if one is going to 

repeat the process several times.. The utility of the quasi-Newton BFGS algorithm is its 

ability to improve the "individuals it treats", so "its beneficial effects can be obteined just 

pertorming a few iterations each time" [Quagliarella and Vicini (1998), p. 307]. 
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In this study, the number of agents varies from two to three, while the borrowing 

restrietion is progressively relexed in a series of alternative experiments. The nature of the 

endowment processes also varies, in order to see how sensitive the presence or absence of 

GARCH in real returns may be to alternative specifications. 

4. Calibration 

Table I lists the parameter configuration we use in the ba£eline simulations of the 

model. 

 Table I: Parameter Specification   

 Discount Rate    β = .96 

 Production Fn. and Depreciation  A = 1, α = .36, δ = .1

 Borrawing Limits    λ = { 1, 25, .5,1, 1.5, 

3}

 Risk Aversion-2 agents   σ = {.5, 3} 

 Risk Aversion-3 agents   σ = {.5,1.5, 3} 

 Endowments-2 agents   e1=1/2[.8, 1.2],π( 11
jj ee ) = .5 

1211 1,5.)( eeee jk −==π

 Endowments-3 agents   e1=1/3[.8, 1.2],π( i
j

i
j ee ) = .5 

213 1;2,1,5.)( eeeiee i
j

i
k −−===π

The parameter specification is similar to previous studies. The ranges for the 

idiosyncratic shocks are slightly smeller than those used by den Hann (1997), who 

calibrated his model for monthly data, but identical to those used by Huggett (1997). The 

transition probabilities are identical to Huggett's specification, as are the production 

function coefficients the rate of depreciation, and the discount rate. 

The sample size for the model is 2000. The number of neurons set for each agent is 

two. Each agent knows its own current endowment shock and lagged capital stock, as well 

as the lagged capital and lagged endowment shocks of the other agents. Thus the neural 

network parameterized expectation approximation for each  is a function of four "state 

variables" in the two-agent model, and a function of six state variebles in the three-agent 

model. 
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5. Simulation Results 

This section first takes up the results for the two agent model, and then discusses 

the three-agent model. 

5.1 Two Agent Model 

The key results from simulations of the two agent model appear in Table 2. 

Table 2 

Summary Statistics: Two Agent Model 

Borrowing Restriction (% K) 

        0.25       0.5        

1

 Mean Borrowing   0.603917 2.255711

 2.542171 

 Consumption:1   0.516968 0.442467

 0.431263 

 Consumption:2   0.793493 0.844199

 0.864836 

 Real Returns 

 Standard Deviation  0.004228 0.003769

 0.004731 

 Skewness   - 1.009439 -0.554032

 0.456481 

 Kurtosis    5.733738 4.139428

 3.275868 

 GARCH Coeff   0.625015 0.807888

 0.668315 

 ARCH Coeff   0.374983 0.127726

 0.2311 82 

 Correlation: cond variance,  
real returns   0.287599 0.050931 -0.00695 
 Correlation: cond variance, gdp -0.295732 -0.052837

 0.001739 

Table 2 shows, as expected, that mean borrowing increases as restrictions on 

borrowing or lending are relaxed. Similarly, consumption of agent two, with a higher 

relative risk aversion caefficient, becomes higher as the restitutions on borrowing are 
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relaxed. However there is no discernible pattern in the behavior of the standard deviation as 

λ increases. However, the skewness of real returus increases as financial restrictions are 

relaxed, as λ increases from .25 to 1, while kurtosis decreases. 

However, Table 2 aleo shows that the GARCH or ARCH coefficients are present 

and significant for real returns, whether the restrictions on borrowing and lending are tight 

or loose. 

The correlations between the conditional variance of the returns and the level of 

returns are positive, under relatively tight restrictions, but decline and become negligible as 

λ approaches 1. Similarly the correlations between the conditional variance and gdp growth 

are negative under tight restrictions but also decline in absolute value. 

Similar values for these correlation coefficients are reported by den Haan and 

Spear [(1998), p. 449] for U.S. data. The reported correlations between the conditional 

variance and real returns fell in a range of [.414, .415], while the correlations botween the 

conditional variance and gdp growth fell in a range of [-.17, -.21]. 

Figure 1 pictures the cross correlations between the conditional variance the level 

of real returns for the alternative borrowing restrictions. 
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5.2 Three Agent Model 

The results from the three agent model appear in Table 3. 
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Table 3 

Summary Statistics: Three Agent Model 

Borrowing Restriction (% K) 

        0.25         0.5       

1

 Mean Borrowing   1.210354 2.978925

 5.943099 

 Consumption:1   0.184746 0.236955

 0.201595 

 Consumption:2   0.499165 0.469993

 0.518401 

 Consumption:3    0.60204  0.622154

 0.639938 

 Real Returns 

 Standard Deviation  0.008094 0.008962

 0.008745 

 Skewness   -1.636504 -1.822565

 -1.803509 

 Kurtosis     4.467825     5.1026

 5.705825 

 GARCH Coeff    0.544928 0.103151

 0.561453 

 ARCH Coeff    0.160656 0.735579

 0.214074 

 Correlation: cond variance,  
real returns        0.2581      0.016     -0.0492 
 Correlation: cond variance, gdp -0.226807  -0.051801

 0.148807 

In the three agent model, as in the two agent model, one notes that total borrowing 

progressively increases as the restrictions are relaxed. With the constant relative risk 

aversion coefficients set at {.5, 1.5, 3}, one notes that the mean consumption ranking, of the 

three agents, ramains the same, whatever the value of λ, with more risk averse agents 

consuming more than the less risk averse agents. 

As in the two agent model, the GARCH and ARCH coefficients are positive and 

significant for all values of λ. Similarly, for λ = .25 the tabulated correlations of the 
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conditional variance with real returns and with gdp growth are reasonably close matches 

with those reported by den Haan and Spear (1998) for the US. 

Figure 3 pictures the cross correlations for the level of real returns and its own 

lagged conditional variances for the three agent model. 
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6. Conclusion 

This paper chellenges a conclusion of den Haan and Spear, that "asset returns are 

more volatile whenever financial frictions restrict the amount that agents want to trade" 

[den Haan and Spear (1998), p. 451]. Significant GARCH or ARCH parameters appear in 

real asset returns, once production is introducted, whether restrictions on borrowing are 

relatively tight or relatively slack. What is crucial is that agents be relatively heterogeneous. 

This does not mean that the volatility of asset returns has the same effects in all 

environments. Depending on whether there are tight or loose restrictions, the volatility of 

the asset returns may have positive or negative effects on returns as well as on productivity. 

The simulations provide some evidence that in cases when borrowing limits are less than 25 

percent of the level of total productive capital, then real return volatility matters much 

more. It matters much more, in these cases, simply because such real volatility is associated 

with higher real asset returns and lower gdp growth. 
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